In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes.
نویسندگان
چکیده
In-vivo measurements of human brain tissue conductivity at body temperature were conducted using focal electrical currents injected through intracerebral multicontact electrodes. A total of 1,421 measurements in 15 epileptic patients (age: 28 ± 10) using a radiofrequency generator (50 kHz current injection) were analyzed. Each contact pair was classified as being from healthy (gray matter, n = 696; white matter, n = 530) or pathological (epileptogenic zone, n = 195) tissue using neuroimaging analysis of the local tissue environment and intracerebral EEG recordings. Brain tissue conductivities were obtained using numerical simulations based on conductivity estimates that accounted for the current flow in the local brain volume around the contact pairs (a cube with a side length of 13 mm). Conductivity values were 0.26 S/m for gray matter and 0.17 S/m for white matter. Healthy gray and white matter had statistically different median impedances (P < 0.0001). White matter conductivity was found to be homogeneous as normality tests did not find evidence of multiple subgroups. Gray matter had lower conductivity in healthy tissue than in the epileptogenic zone (0.26 vs. 0.29 S/m; P = 0.012), even when the epileptogenic zone was not visible in the magnetic resonance image (MRI) (P = 0.005). The present in-vivo conductivity values could serve to create more accurate volume conduction models and could help to refine the identification of relevant intracerebral contacts, especially when located within the epileptogenic zone of an MRI-invisible lesion. Hum Brain Mapp 38:974-986, 2017. © 2016 Wiley Periodicals, Inc.
منابع مشابه
Imaging of Gastric Emptying with Electrical Impedance Tomography
Electrical Impedance Tomography uses surface electrical measurements to image changes in the conductivity distribution within a medium. This technique was applied to the measurement of gastric motility by imaging conductivity changes in the abdomen after ingestion of liquid. Preliminary results show good correlation with typical clinical measurements. composition, and caloric content have a lar...
متن کاملMethodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human
Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments ...
متن کاملEvidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the...
متن کاملApplications of Electrical Impedance Tomography in Neurology
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...
متن کاملMagnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.
The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of vol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2017